$$
k=\operatorname{hin}\{k: k \sqrt{2} \in \mathbb{N}\}
$$

$$
\left(\frac{2 a-p}{p-q}\right)^{2}=2 \text {, but }
$$

$$
\left(\frac{p}{q}\right)<2 \Rightarrow p<24
$$

$$
\Rightarrow p-q<q
$$

So $\frac{p}{q}$ ish't
smallest

$$
\begin{aligned}
& \left(\frac{2-P / 4}{P / 4-1}\right)^{2}=\frac{4-4 P / 4}{2-2 \frac{q}{q}+1} \\
& =\frac{6-4 \frac{P}{q}}{3-3 \frac{D}{4}}=2
\end{aligned}
$$

If $x=\frac{p}{q}=\sqrt{2}$, then same for $\frac{x+2 / x}{2}$

$$
\frac{x+2 f x}{2}=\frac{x}{2}+\frac{1}{x}=\frac{p}{2 q}+\frac{q}{p}=\frac{p^{2}+2 q^{2}}{2 p q}
$$

Added Jan 13, proof by Rich Schwitz:

$$
(\sqrt{2}+1)(\sqrt{2}-1)=1
$$

$$
\begin{aligned}
& \left(\frac{p}{q}\right)^{2}=2 \quad(\sqrt{2}-1) k<k \text { k hes same property. } \\
& k \frac{p}{q} \in \mathbb{N} \Rightarrow k=" \text { minimal } q \text { " } \\
& k\left(\frac{p}{q}-1\right)=k \frac{p-q}{k}=t-g \in \mathbb{N} \\
& \frac{p}{q}=\frac{2 q-p}{p-q} \\
& \frac{p}{q}(p-q)=\frac{p^{2}-q p}{q} \\
& =p\left(\frac{p}{q}-1\right)=q\left(\frac{p^{2}}{q^{2}}-\frac{p}{r}\right) \\
& \text { If }\left(\frac{p}{q}\right)^{2}=\alpha \text {, then also } \\
& =q\left(2-\frac{\rho}{q}\right)=29-p
\end{aligned}
$$

$$
(\sqrt{2}+1)(\sqrt{2}-1)=1
$$

P/A 9^{11} /p yetk $\sqrt{2}+1$ have the sime donominutor as they differ by an intuger.

